Particle transport and energization associated with disturbed magnetospheric events

نویسندگان

  • Sorin Zaharia
  • C. Z. Cheng
  • Jay R. Johnson
چکیده

Energetic particle flux enhancement events observed by satellites during strongly disturbed events in the magnetosphere (e.g., substorms, storm sudden commencements, etc.) are studied by considering interaction of particles with Earthward propagating electromagnetic pulses of westward electric field and consistent magnetic field of localized radial and azimuthal extent in a background magnetic field. The energetic particle flux enhancement is mainly due to the betatron acceleration process: particles are swept by the Earthward propagating electric field pulses via the E × B drift toward the Earth to higher magnetic field locations and are energized because of magnetic moment conservation. The most energized particles are those which stay in the pulse for the longest time and are swept the longest radial distance toward the Earth. Assuming a constant propagating velocity of the pulse we obtain analytical solutions of particle orbits. We examine substorm energetic particle injection by computing the particle flux and comparing with geosynchronous satellite observations. Our results show that for pulse parameters leading to consistency with observed flux values, the bulk of the injected particles arrive from distances less than 9 RE, which is closer to the Earth than the values obtained by the previous model [1] and is also closer to the distances obtained by the injection boundary model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the influence of ionospheric O outflow on magnetospheric dynamics: dependence on the source location

[1] Heavy ions of ionospheric origin (O) play an important role in altering global magnetospheric dynamics. While the heavy ions mainly originate from the dayside cusp and the nightside auroral region, the impact of these heavy ions on magnetospheric dynamics has not been differentiated. Controversy also remains on the role of heavy ions on tail stability and their energization mechanism in the...

متن کامل

Ultra - Low - Frequency Magnetospheric Physics : Scale - Interactive Processes Involving Global Dynamics , Boundary and Internal Resonance Layers , Magnetosphere - Ionosphere Coupling , and Particle Energization

Objectives and Methodology: A critical-mass research effort will explore and advance theoretical understanding of the causal agents, coupling, scale -interactions, and particle kinetics of magnetospheric and ionospheric variability in the ultra-low-frequency regime (from less than 1 mHz up to 1 Hz). Magnetotail oscillations (periods of 10-60 min), magnetospheric boundary and dayside merging pul...

متن کامل

Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions

We demonstrate that under some magnetospheric conditions protons and oxygen ions are accelerated once per Saturn magnetosphere rotation, at a preferred local time between midnight and dawn. Although enhancements in energetic neutral atom (ENA) emission may in general occur at any local time and at any time in a Saturn rotation, those enhancements that exhibit a recurrence at a period very close...

متن کامل

Particle acceleration and reconnection in the solar wind

An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization...

متن کامل

Magnetically self-consistent ring current simulations during the 19 October 1998 storm

[1] We investigate effects of magnetic self-consistency on ring current development by calculating equatorial particle transport in a model that feeds back the ring current on the magnetospheric configuration. The equatorial magnetic intensity is computed by solving a force-balance equation in the equatorial plane. This force-balance computation is coupled to a kinetic proton and electron drift...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999